Contents:
- Review
- particle in a box
- contributions from famous quantum scientists
- reduced mass
- Bohr atom
- de Broglie matter wave
- photo-electron effect
- Hermitian operator
- commutator
- hydrogen atom
- harmonic oscialltor
- ladder operator
- angular momentum operator (lecture 18 - onwards)
- term symbols
- L - S coupling
- equivalent and non-equivalent electrons
- Hund’s rules
- Questions
Review
particle in a box
contributions from famous quantum scientists
reduced mass
Bohr atom
de Broglie matter wave
photo-electron effect
Hermitian operator
commutator
hydrogen atom
harmonic oscialltor
ladder operator
angular momentum operator (lecture 18 - onwards)
classical understanding
- components of angular momentum (3 in cartesian plane) as cross product: $$L = r \times p = \begin{bmatrix} x & y & z \end{bmatrix} \times \begin{bmatrix} p_x & p_y & p_z \end{bmatrix} = \begin{bmatrix} i & j & k\\ x & y & z\\ p_x & p_y & p_z \end{bmatrix}$$
$$L = i(yp_z - p_yz) - j(xp_z - p_xz) + k(xp_y - p_xy) \\ = iL_x - jL_y + kL_z$$
- right handed coordinate system
- cyclic
commutation relationship
- coupling of angular momentum vectors in molecules
- when axes are mounted on molecule, sign of i flips in commutation
term symbols
L - S coupling
equivalent and non-equivalent electrons
Hund’s rules
Questions
ch 9
- 42